
Tree-Adjoining Grammar (TAG)

Linguistics 564
Computational Grammar Formalisms

Based heavily on Abeillé and Rambow (2000) and Joshi and Schabes (1997)

TAG

• Pseudo-extension of CFGs

– Abandon the context-free grammar formalism
– Keep the idea of deriving complete trees in a sequence of rewriting

steps—but in TAG we rewrite trees, not strings

• Highly lexicalized (LTAG):

– Every tree is associated with exactly one lexical item
– Every lexical item is associate with a set of trees

2/44

Phrase Structure Trees

John

NP

really

likes

V

Lyn

NP

VP

VP

S

(1) a. S → NP VP

b. VP → really VP

c. VP → V NP

d. V → likes

e. NP → John

f. NP → Lyn

3/44

String rewriting derivation

1. S → NP VP (1a)

2. → John VP (1e)

3. → John really VP (1b)

4. → John really V NP (1c)

5. → John really likes NP (1d)

6. → John really likes Lyn (1f)

4/44

Tree Substitution Grammars

• Elementary structures are trees

• A down arrow (↓) indicates where a substitution takes place

α1 α2 α3

NP↓

likes

V
NP↓

VP

S

John

NP

Lyn

NP

5/44

Substitution operation

The substitution operation allows us to insert elementary trees into other
elementary trees

• Where there is a (non-terminal) node marked for substitution (↓) on the
frontier, an elementary tree rooted in the same category can be substituted
there

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

����������

AS

A

A

S

6/44

Final tree

So, we end up with the following derived tree

John

NP

likes

V

Lyn

NP

VP

S

Notes:

• order of substitutions is irrelevant

• This tree is completed = there are no substitution nodes left on the frontier

7/44

Elementary trees

Let’s step back a little and look at the building blocks of TAG. Our basic
elements are elementary trees, which come in two guises:

• initial trees, which have:

– root node
– interior nodes labeled by non-terminal symbols
– frontier nodes of terminal and non-terminal symbols; substitution nodes are

marked by the down arrow (↓)

⇒ TSGs only use initial trees

8/44

Elementary trees (cont.)

• auxiliary trees, which have

– root node
– interior nodes labeled by non-terminal symbols
– frontier nodes similar to as in initial trees, but with a designated (*) foot

node = identical label to the root node

⇒ TAGs need auxiliary trees for adjunction

⇒ In LTAG, at least one frontier node must be a terminal symbol (lexical item)

9/44



Lexicalization

Lexicalization is the process of associating at least one terminal element with
every elementary tree.

Adjunction is necessary if we want to lexicalize the grammars in a linguistically
meaningful way, i.e., substitution isn’t enough.

α1 α2 α3 β1

NP↓

likes

V
NP↓

VP

S

John

NP

Lyn

NP

really VP*

VP

10/44

The need for adjunction

With the elementary trees above and using only substitution, there is no way to
generate John really likes Lyn.

We would need an elementary tree along the following, unappealing lines:

NP↓

really VP↓

VP

S

11/44

Adjunction

So, we introduce the adjunction operation, which is where auxiliary trees come
in.

• We can now insert one tree into another, provided that the nodes match up

• That is, an auxiliary tree can modify an XP iff its root and foot nodes are both
labeled XP

Using adjunction and substitution gives us true Tree Adjoining Grammars
(TAGs)

12/44

Adjunction example

α4 β1 α5

John

NP

likes

V

Lyn

NP

VP

S

really VP*

VP

⇒

John

NP

really

likes

V

Lyn

NP

VP

VP

S

13/44

Adjunction operation

• An auxiliary tree is inserted into an initial tree (or derived tree) by cutting the
initial/derived tree into two parts, above and below a node (A)

– The node of the root of the auxiliary tree is identified with the node A
– The node of the foot of the auxiliary tree is identified with the root of the

excised tree

������
������
������
������
������
������

������
������
������
������
������
������

����������

������
������
������
������
������
������

������
������
������
������
������
������

AS S

A A

A*

14/44

Adjunction (Adjoining) Constraints

Adjunction sometimes needs to be constrained even more than by ensuring
category identity

• Selective Adjunction (SA(T)): only members of T, a set of auxiliary trees,
may adjoin at this node

• Null Adjunction (NA): no adjunction is allowed at this node

• Obligatory Adjunction (OA(T)): a member of T must adjoin at this node

15/44

Selective Adjunction

One possible analysis of put could involve selective adjunction:

α6 β3 β4

NP↓

put NP↓

VPSA(β3,β4,...)

S

VP* away

VP

VP*

on

P
NP↓

PP

VP

⇒ We might want a way to say that locative VP modifiers can adjoin here →
we’ll come back later to using features to redefine adjunction constraints

16/44

Null Adjunction

For when you absolutely cannot have an adjunct modifying a phrase

who

John

NP

saw

V

VP

SNA

S* yesterday

S

VP* yesterday

VP

17/44

Obligatory Adjunction

For when you absolutely must have adjunction at a node:

α β1 β2

NP↓

seen

V

VPOA(β1,β2)

S

has

Aux
VP*

VP

is

Aux
VP*

VP

This is often used to handle complement structures where the complement and
the mother are the same category

18/44



Derived Trees and Derivation Trees

TAG distinguishes between derived trees and derivation trees. As a shorthand,
think of them like so:

• Dervied trees look like context-free/phrase structure trees

• Derivation trees look like dependency trees

That is, TAG provides us a way of having both kinds of representations

19/44

Example Lexicon

Recall the following lexical entries:

α1 α2 α3 β1

NP↓

likes

V
NP↓

VP

S

John

NP

Lyn

NP

really VP*

VP

20/44

Derived Tree

The derived tree is obtained by gluing all the tree pieces together until there’s a
normal-looking PS tree:

John

NP

likes

V

Lyn

NP

VP

S

But this tells us nothing about how the tree was derived.

21/44

Derivation Trees

The derivation tree records a history of the derviation and in the process captures
the dependency relations among words in the sentence

αJohn(1) αLyn(2.2) βreally(2)

αlike

22/44

How to come up with a derivation tree

Each node in the derivation tree records the address of the node in the parent
tree to which the adjunction/substitution was performed

• 0 is the root node address

• k is the address of the kth child of the root node

• p.q is the address of the qth child of the node at address p (sort of like the qth

child of the pth child)

23/44

Derivation tree address

Lyn gets the annotation 2.2 because VP is the second daughter of S, and NP is
the second daughter of VP

α1 α3

NP↓

likes

V
NP↓

VP

S

Lyn

NP

24/44

Locality

TAG has a different notion of locality than in other formalisms

• On the one hand, an initial tree (e.g., lexical entry) can be of arbitrary size, so
the domain of locality is increased.

⇒ Extended domain of locality (EDL)

• On the other hand, small initial trees can have multiple adjunctions inserted
within them, so what are normally considered non-local phenomena are treated
locally

⇒ Factoring recursion from the domain of dependencies (FRD)

25/44

Domain of locality: agreement

The lexical entry for a verb like loves will contain a tree like the following:

NP3.sg↓

loves

V NP↓

VP

S

With this extended domain of locality, we can easily state agreement between the
subject and the verb in a lexical entry

26/44

CFG notion of agreement

Compare the corresponding CFG rules; agreement has to be transfered between
at least three different rules:

• S → NP3.sg VP3.sg

• VP3.sg → V3.sg NP

• V3.sg → loves

27/44



Factoring recursion from domain: Extraction

Another advantage of TAG’s domain of locality is how extraction phenomena can
be captured in a lexical entry

NPi↓

NP↓

read

V

e

NPi

VP

S

S

This will license a clause like Which book Max read

28/44

Example trees for extraction

The derived and derivation trees for Which book Max read :

which book

NPi

Max

NP

read

V

e

NPi

VP

S

S

αwhich(0)

αbook(1)
αMax(2.1)

αread

29/44

Extraction: strengths

One of the strengths of this method is that we can adjoin a phrase like do you

think, and we still maintain the appropriate dependency relations:

do

V

you

NP

think

V
S*

VP

S

S

⇒

which book

NPi

do

V

you

NP

think

V

Max

NP

read

V

e

NPi

VP

S

VP

S

S

S

30/44

The derivation tree

αwhich(0)

αbook(1) αMax(2.1)

αdo(0) αyou(2.1)

βthink(2)

αread

Note how the derivation/dependency tree maintains the same relations, simply
adding another branch.

⇒ That is, even though the derived tree is much higher, the dependency relations
are the same.

31/44

Extraction: weaknesses

Some extraction phenomena are not as easy to handle in TAG, such as the
following:

(2) This building, John bought a picture of.

What’s wrong with this?

• The normal TAG view of extraction depends on adjunction, which is defined as
involving a tree with identical root and foot nodes

• But picture is an NP, and we need to add a sentence in-between

32/44

Extraction example: picture

Lexical entry for picture (note again how more than one word can be in an initial
tree) and potential entry for bought:

NPi↓

Det↓

picture

N

NP

of

P

e

NPi

PP

NP

S

NP↓

bought

V
NP*

VP

S

33/44

Problems with picture phrases

• Adjunction of this entry for bought into the picture tree is needed to get This

building, John bought a picture of, but it is impossible

• TAG has to be extended to multi-component TAG (MCTAG), which we won’t
cover.

34/44

Using features in TAG

We have alluded to using features before, but we have not properly introduced
them

• Features can be added to nodes in a tree

• In order for a tree to be substituted or adjoined, it must match the features of
the node it is attaching to.

• In this way, we can reconstruct the ideas of obligatory, null, and selective
adjunction

35/44

Feature example

A simple way of using features is simply as we’ve seen before, to enforce
agreement and the like:

NP↓
»

per 3

num sg

–

loves

V
»

per 3

num sg

– NP↓

VP

S

36/44



Top and bottom feature structures

To reconstruct the three kinds of adjunction, we need to define top and bottom
feature structures

• top = tree above this node has these features, i.e., behaves like this

• bottom = tree below this node has these features

37/44

Feature structure example

OA system Feature system

NP↓

seen

V

VPOA(β1,β2)

S

NP↓

seen

V

VP
»

tense +

tense −

–

S
»

tense +

tense +

–

• Above seen’s VP node, the tree is tensed; below, it is not.

• These features do not unify, so the tree is not legal without adjunction

38/44

Feature structure example (cont.)

is looks for a non-tensed verb in order to make a tensed clause

is

Aux VP*

»

tense −

tense

–

VP

»

tense

tense +

–

⇒
NP↓

is

Aux

seen

V

VP

»

tense −

tense −

–

VP

»

tense −

tense −

–

VP

»

tense +

tense +

–

S

»

tense +

tense +

–

39/44

Linguistic analysis

Mostly, we have just been looking at the formal description of TAGs; we need to
further restrict these trees to make them match language phenomena. Some
possible constraints:

• An elementary tree is the maximal syntactic projection of a lexical item

• Auxiliary trees are only used for modifiers, functional categories, predicates
with verbal complements, and raising predicates

• An elementary tree is associated with a semantic meaning

We can also group elementary trees into tree families in order to be able to
capture linguistic generalizations (right now, each lexical tree has to be
individually stipulated)

40/44

Supertags

You can view a lexical entry’s initial tree as a supertag, i.e., a part-of-speech tag
with more syntactic information than usual

Usually Supertags

asleep

Adj

asleep

Adj

other

Adj

other

Adj
N*

N

We can now capture distinctions between adjectives without having to specify
new categories

41/44

Parsing with TAGs

The TAG formalism presents some problems for parsing (more details in the Joshi
and Schabes (1997) paper if you’re interested):

• Adjunction is a complicated operation because it can wrap strings around
other strings

John loves Mary can become John probably loves Mary completely

• Thus, more memory is required to parse a string and more operations are
needed for chart parsing

42/44

Parsing with TAGs: EPDAs

Instead of regular pushdown automata (PDAs), we need embedded
pushdown automata (EPDAs) to store the parse information

• Pushdown automaton: puts items on a stack

S → NP VP finds an NP and has VP S on a stack, meaning that once a VP is
found, then an S has been completed

• Embedded pushdown automaton: puts stacks of items on a stack

Can have a stack of NPs on the stack which will then match Dutch verbs
appropriately

43/44

Parsing with TAGs: Tree traversal

How one traverses a tree in parsing a TAG grammar is important

• Cannot simply use bottom-up tree traversal → have to go in a left-to-right
manner

• This left-to-right manner allows one to find adjoining nodes

44/44

References

Abeillé, Anne and Owen Rambow (2000). Tree Adjoining Grammar: An Overview. In Anne Abeillé and Owen Rambow (eds.), Tree

Adjoining Grammars: Formalisms, Linguistic Analyses and Processing , Stanford, CA: CSLI Publications, pp. 1–68.

Joshi, Aravind K. and Yves Schabes (1997). Tree Adjoining Grammars. In A. Saloma and G. Rosenberg (eds.), Handbook of Formal

Languages and Automata, Heidelberg: Springer-Verlag.


