Deprecated: Function set_magic_quotes_runtime() is deprecated in /DISK2/WWW/lokiware.info/mff/wakka.php on line 35 Matfiz : Matematická Analýza / Zkouška ZS 2007 - 8
Přihlášení:  Heslo:  
Matfiz: MatematickáAnalýza/ZkouškaZS2007-8 ...
Hlavní Stránka | Seznam Stránek | Poslední Změny | Poslední Komentované | Uživatelé | Registrace |
Toto je stará verze stránky MatematickáAnalýza/ZkouškaZS2007-8 z 2008-01-17 19:50:56..

Matematická analýza — zkouška ZS 2007–8


1. písemka (17.1.08)


1) Naleznete (nebo dokazte, ze neexistuje) globalni minimum a globalni maximum

funkce f(x,y,z) = sin(x)sin(y)sin(z) na mnozine M={(x,y,z) v R^3 | x>0, y>0, z>0, x+y+z = pi/2}.

2) a) Napiste (Riemannovu nebo Darbouxovu) definici vicerozmerneho Riemannova

integralu funkce f pres box v R^n a pres obecnou podmnozinu R^n.

b) Necht I je n-rozmerny box a D je jeho deleni. Dokazte, ze soucet objemu |J| podboxu J v D

je rovny objemu |I| boxu I.

3) a) Uvedte vysledky o uplnych metr. prostorech: definice uplnosti, operace zachovavajici uplnost,

Banachova veta.

b) Necht (M,d) je metricky prostor, f a g jsou dve zobrazeni z M do M a h je slozene zobrazeni h=f(g).

Dokazte nebo vyvratte: Pro kazde f a g plati, ze kdyz f neni kontrahujici a g neni kontrahujici, potom
ani h neni kontrahujici. Odpoved oduvodnete.

4) Uvedte zneni a dokazte: Veta o extremech funkci vice promennych na otevrene mnozine.


naznak reseni:
1) globalni maximum je v [pi/6, pi/6, pi/6]. Minimum se tam nenabyva.
2)b) opravdu plati.
3)b) neplati. Napr kdyz f budu menit v jedne souradnici a g v druhe, tak dohromady umim dostat kontrahujici

zobrazeni, prestoze ani f ani g nebude.
podle me ( Karel Fiser? ) to plati, protoze z predpokladu :
pro kazdy r,sR, x,yM : d(fx,fy) > r*d(x,y) (totez pro g)
d(f(gx),f(gy)) > r*d(gx,gy) > r*s*d(x,y)
( z tohoto vyplyva ze h=f(g) neni kontrahujici )
pokud je tam neco spatne, prosim o vysvetleni dik

 
Na stránce nejsou žádné soubory. [Zobrazit soubory (formulář)]
Na stránce je jeden komentář. [Zobrazit komentáře (formulář)]